Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Cell Physiol ; 236(2): 763-770, 2021 02.
Article in English | MEDLINE | ID: covidwho-664574

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of novel coronavirus 2019 (COVID-19), has kept the globe in disquiets due to its severe life-threatening conditions. The most common symptoms of COVID-19 are fever, sore throat, and shortness of breath. According to the anecdotal reports from the health care workers, it has been suggested that the virus could reach the brain and can cause anosmia, hyposmia, hypogeusia, and hypopsia. Once the SARS-CoV-2 has entered the central nervous system (CNS), it can either exit in an inactive form in the tissues or may lead to neuroinflammation. Here, we aim to discuss the chronic infection of the olfactory bulb region of the brain by SARS-CoV-2 and how this could affect the nearby residing neurons in the host. We further review the probable cellular mechanism and activation of the microglia 1 phenotype possibly leading to various neurodegenerative disorders. In conclusion, SARS-CoV-2 might probably infect the olfactory bulb neuron enervating the nasal epithelium accessing the CNS and might cause neurodegenerative diseases in the future.


Subject(s)
COVID-19/complications , Olfaction Disorders/etiology , SARS-CoV-2 , Animals , Humans , Neurodegenerative Diseases/etiology
2.
Sci Total Environ ; 729: 139021, 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-125023

ABSTRACT

The novel Coronavirus disease 2019 (COVID-19) is an illness caused due to Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The World Health Organization (WHO) has declared this outbreak a global health emergency and as on April 24, 2020, it has spread to 213 countries, with 25,91,015 confirmed cases and 742,855 cases have been recovered from COVID-19. In this dreadful situation our team has already published an article in the Science of the Total Environment, which elaborates the various aspects of the SARS-CoV-2 infection. In this situation, it is imperative to understand the possible outcome of COVID-19 recovered patients and determine if they have any other detrimental illnesses by longitudinal analysis to safeguard their life in future. It is necessary to follow-up these recovered patients and performs comprehensive assessments for detection and appropriate management towards their psychological, physical, and social realm. This urges us to suggest that it is highly important to provide counselling, moral support as well as a few recommended guidelines to the recovered patients and society to restore to normalcy. Epidemiological, clinical and immunological studies from COVID-19 recovered patients are particularly important to understand the disease and to prepare better for potential outbreaks in the future. Longitudinal studies on a larger cohort would help us to understand the in-depth prognosis as well as the pathogenesis of COVID-19. Also, follow-up studies will help us provide more information for the development of vaccines and drugs for these kinds of pandemics in the future. Hence, we recommend more studies are required to unravel the possible mechanism of COVID-19 infection and the after-effects of it to understand the characteristics of the virus and to develop the necessary precautionary measures to prevent it.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Follow-Up Studies , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL